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APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY 

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018 
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Course Name: PROBABILITY, RANDOM PROCESSES AND NUMERICAL METHODS 

(AE, EC) 
Max. Marks: 100  Duration: 3 Hours 

(Normal distribution table is allowed in the examination hall) 
PART A  

  Answer any two full questions, each carries 15 marks Marks 

1 a) A random variable X has the following probability distribution: 

x -2 -1 0 1 2 3 

f(x) 0.1 k 0.2 2k 0.3 3k 

Find:  i) The value of k               ii) Evaluate 𝑃(𝑋 < 2) and 𝑃(−2 < 𝑋 < 2) 

          iii) Evaluate the mean of X  

(7) 

 b) The probability that a component is acceptable is 0.93. Ten components are picked 

at random. What is the probability that: 

    i) At least nine are acceptable     ii) At most three are acceptable. 

(8) 

2 a) Suppose that the length of a phone call in minutes is an exponential random variable 

with parameter 𝜆 =
1

10
. If someone arrives immediately ahead of you at a public 

telephone booth, find the probability that you will have to wait: 

    i) More than 10 minutes          ii) Between 10 and 20 minutes. 

(7) 

 b) For a normally distributed population, 7% of items have their values less than 35 

and 89% have their values less than 63. Find the mean and standard deviation of the 

distribution. 

(8) 

3 a) Fit a binomial distribution to the following data and calculate the theoretical 

frequencies. 

x 0 1 2 3 4 5 6 7 8 

f 2 7 13 15 25 16 11 8 3 
 

(8) 

 b) The time between breakdowns of a particular machine follows an exponential 

distribution, with a mean of 17 days. Calculate the probability that a machine breaks 

down in a 15 day period. 

(7) 

PART B 
Answer any two full questions, each carries 15 marks 

4 a) The joint PDF of two continuous random variables X and Y is given by     

𝑓(𝑥, 𝑦) = {
𝑘𝑥𝑦   0 < 𝑥 < 4, 1 < 𝑦 < 5
0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 . 

Find:        i) k             ii) The marginal distributions of X and Y 

                 iii) Check whether X and y are independent. 

(7) 

 b) A distribution with unknown mean μ has variance equal to 1.5. Use Central Limit 

Theorem to find how large a sample should be taken from the distribution in order 

that the probability will be at least 0.95 that the sample mean will be within 0.5 of 

the population mean. 

(8) 
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5 a) The autocorrelation function for a stationary process X(t) is given by         𝑅𝑋𝑋(𝜏) =

9 + 2𝑒−|𝜏|. Find the mean value of the random variable 𝑌 = ∫ 𝑋(𝑡)𝑑𝑡
2

𝜏=0
 

and the variance of X(t). 

(7) 

 b) A random process X(t) is defined by 𝑋(𝑡) = 𝑌(𝑡) cos(𝜔𝑡 + 𝜃) Where Y(t) is a 

WSS process, 𝜔 is a constant and 𝜽 is a random variable which is uniformly 

distributed in [0,2π] and is independent of Y(t). Show that X(t) is WSS. 

(8) 

6 a) Consider the random process 𝑋(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜃) where A and 𝜔 are constants 

and 𝜽 is a uniformly distributed random variable in (0,2π). Check whether or not 

the process is WSS. 

(7) 

 b) The joint PDF of two continuous random variables X and Y is                     

𝑓(𝑥, 𝑦) = {
8𝑥𝑦 , 0 < 𝑦 < 𝑥 < 1

0  ,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

      i)  Check whether X and Y are independent         ii) Find  𝑃(𝑋 + 𝑌 < 1) 

(8) 

PART C 
Answer any two full questions, each carries 20 marks 

7 a)  The number of particles emitted by a radioactive source is Poisson distributed. The source 

emits   particles at a rate of 6 per minute. Each emitted particle has a probability of 0.7 of 

being counted. Find the probability that 11 particles are counted in 4 minutes.      

(4) 

 b)  Assume that a computer system is in any one of the three states: busy, idle and under  

 repair, respectively, denoted by 0,1,2. Observing its state at 2 P. M. each day, the transition 

probability matrix is    𝑃 = [ 
0.6 0.2 0.2
0.1 0.8 0.1
0.6 0 0.4

 ]   

Find out the third step transition probability matrix and determine the limiting probabilities.                                                                

(8) 

 c) If customers arrive at a counter in accordance with a Poisson process with a mean rate of 2 

per minute, find the probability that the interval between two consecutive arrivals is: 

   i)  More than 1 minute                  ii) Between 1 minute and 2 minutes 

   iii)  Less than or equal to 4minutes.                 

(8) 

8 a) Use Trapezoidal rule to evaluate ∫ 𝑥3 𝑑𝑥
1

0
  considering five subintervals (4) 

 b) Using Newton’s forward interpolation formula, find y at  𝑥 = 8  from the following 

table:      x :     0          5          10        15         20         25 

               y :     7        11          14        18         24         32 

(8) 

 c) Using Euler’s method, solve for y at 𝑥 = 0.1   from  
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 + 𝑥𝑦,     𝑦(0) = 1  

taking step size   ℎ = 0.025 .        

(8) 

9 a) The transition probability matrix of a Markov chain  {Xn ,n≥0} having three states 

1, 2 and 3 is     𝑃 = [ 
0.2 0.3 0.5
0.1 0.6 0.3
0.4 0.3 0.3

 ]   and the initial probability distribution is 

𝑝(0) = [ 0.5 0.3 0.2 ] . Find the following:    

        i) 𝑃{X2 = 2}           ii)  𝑃{𝑋3 = 3, 𝑋2 = 2, 𝑋1 = 1, 𝑋0 = 3} . 

(10) 

 b) Using Newton-Raphson method, compute the real root of  𝑓(𝑥) = 𝑥3 − 2𝑥 − 5  

correct to 5 decimal places. 

(5) 

 c) Using Lagrange’s interpolation formula, find the values of y when  𝑥 = 10  from 

the following table : 

x :         5            6              9             11 

y :         12          13            14            16 

(5) 

**** 

 

For More Visit : KtuQbank.com

https://ktuqbank.com/
https://ktuqbank.com/
https://ktuqbank.com/

